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Often a problem asks us to optimize more than one characteristic of a system. However there are
usually trade-offs in doing so; that is, one can optimize a certain trait at the expense of another.
For these kinds of problems, there isn’t a solution: it’s a matter of choice. Today we investigate
how to optimize a problem with multiple objectives.

1 Review

Let’s review what we’ve covered in the last couple of lectures considering the equation Ax = b with
A ∈ Rm×n.

Least Squares

• Typically, A is a tall matrix (more equations than variables)

• We would like to find an approximate solution Ax̂ ≈ b as there is typically no x satisfying
Ax = b (called the estimation setup)

• In optimization notation, the least-squares (LS) problem is written as

minimize
x∈Rn

∥Ax− b∥2 (1)

• The set of solutions of Eq. (1) is precisely the same as the set of solutions to the normal
equations (2) below.

ATAx̂ = ATb (2)

• A solution to the normal equations always exists. That solution is unique if and only if
null(A) = {0}, i.e. if the columns of A are linearly independent.

Least Norm

• Typically, A is a wide matrix (more variables than equations)

• There are typically infinitely many x satisfying Ax = b, so we want to find the “best” x among
all solutions (called the control setup)

• In optimization notation, the least-norm (LN) problem is written as

minimize
x∈Rn

∥x∥2

such that Ax = b
(3)
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• The set of solutions of (3) is precisely the same as the set of solutions x̂ to the system of
equations

AATw = b and x̂ = ATw (4)

• A solution to Eq. (4) exists if and only if b ∈ range(A), i.e. if Ax = b has at least one solution.
If a solution exists, it is always unique. Note: there may be many w that solve (4), but they
all lead to the same x̂.

2 Defining the Multi-Objective Optimization Problem

Introduction to the cost notation Consider a hybrid version of LS and LN, where we are
trying to make both ∥Ax − b∥2 and ∥x∥2 small at the same time. First, we write these as two
separate costs (J1 : Rn → R and J2 : Rn → R). In this case, we have

J1(x) = ∥Ax− b∥2 (5a)

J2(x) = ∥x∥2 (5b)

Where Equation (5a) above represents the Least Squares problem and Equation (5b) represents the
Least norm problem. One can see that a value of x that minimizes one function does not minimize
the other. Figure 1 below depicts a 2D plot of J1(x) and J2(x) for all the possible x given that A
and b are fixed.

Figure 1: Pareto-optimal front
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The green line is the optimal solution, and is called the “Pareto-optimal front”. The areas to the
right and left of the line are “feasible” and “infeasible”, respectively. A natural question may arise
from this plot: which point on the line is the best? This question has no answer! Any design on this
curve is an optimal solution to the multi-objective problem, and points on the Pareto-optimal front
are not comparable unless we assign weights on the objective functions to prioritize them.

A single cost function We can write a single expression that combines these with the help of
a weighting parameter λ > 0 that weights the costs of each accordingly. Eq. (6) below shows that
increasing the value of the weight parameter makes the cost function more sensitive to J2(x), and
naturally the converse is true.

minimize
x∈Rn

J1(x) + λJ2(x) (6)

This is actually a least squares problem! Let’s do some manipulation to prove it.

Rearrange into Least Squares problem

1. Substitute Eqs. (5a) and (5b) into Eq. (6).

minimize
x∈Rn

∥Ax− b∥2 + ∥x∥2 (7)

2. Recall block matrix with norm relationship

∥x1∥2 + ∥x2∥2 =
∥∥∥∥[x1x2

]∥∥∥∥2 (8)

3. Rewrite (7) using (8)

∥Ax− b∥2 + ∥x∥2 = min
x

∥∥∥∥[Ax− b√
λx

]∥∥∥∥2 (9a)

= min
x

∥∥∥∥[ A√
λI

]
x−

[
b
0

]∥∥∥∥2 (9b)

4. This is a LS problem, so its solution set is the same as that of the normal equations[
A√
λI

]T [
A√
λI

]
x =

[
A√
λI

]T [
b
0

]
(10a)

[
AT

√
λI

] [ A√
λI

]
=

[
AT

√
λI

] [b
0

]
(10b)

ATA+
√
λI(

√
λI) = ATb+

√
λI(0) (10c)

(ATA+ λI)x = ATb (10d)

5. The matrix ATA+ λI is invertible for any λ > 0 and any A.
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Figure 2: Slope of Pareto-optimal Curve

Geometric interpretation: The trade-off parameter λ is the negative slope of the Pareto-optimal
curve. So as we vary λ = 0 → ∞, we start on the bottom-right with a slope of 0 and end on the
top-left with a slope of −∞.

3 Special Cases

When λ → 0 in the multi-objective optimization problem, we can recover either the LS or the LN
norm solution, depending on the assumptions we make.

LS problem In the LS setting, when λ → 0 and A has full column rank, then ATA is invertible.
Thus, we can take the limit by just setting λ = 0 and solving (10d).

x̂ = lim
λ→0

(ATA+ λI)−1ATb

= (ATA)−1ATb
(11)

This is the same solution we found when solving the LS problem in Lecture 2.

LN problem In the LN setting, when λ → 0 and A has full row rank, AAT is invertible. However,
we can’t simply set λ = 0 as we did for LS because ATA is not invertible. We can nevertheless
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evaluate the limit using the push-through identity (presented in the next section).

x̂ = lim
λ→0

(ATA+ λI)−1ATb

= lim
λ→0

AT(AAT + λI)−1b

= AT(AAT)−1b

(12)

This is the same solution we found when solving the LN problem in Lecture 3.

4 The Push-Through Identity

Push-Through Identity: If A ∈ Rm×n and B ∈ Rn×m, then

A(BA+ λI)−1 = (AB + λI)−1A (13)

Moreover, AB + λI is invertible if and only if BA+ λI is invertible.

Proof:

1. Factor out A from the right and left of ABA+ λA.

A(BA+ λIn) = ABA+ λA

= (AB + λIm)A
(14)

2. Multiply both sides by (BA+ λIn)
−1 on the right to isolate A.

A = (AB + λIm)A(BA+ λIn)
−1 (15)

3. Finally, multiply both sides by (AB + λIm)−1 on the left.

(AB + λIm)−1A = A(BA+ λIn)
−1 (16)

Regarding invertibility, suppose AB+λI is not invertible. Then there must exist a nonzero element
in the nullspace. So there is some v ̸= 0 such that ABv + λv = 0. Multiply both sides by B on
the left and obtain 0 = BABv + λBv = (BA + λI)Bv. Therefore Bv ∈ null(BA + λI). We can’t
have Bv = 0, because then ABv + λv = λv = 0, which contradicts the fact that λ > 0 and v ̸= 0.
Therefore, we have identified a nonzero element of the nullspace of BA + λI, which means that
BA + λI is not invertible. Applying the same argument starting with BA + λI, we conclude that
AB + λI is invertible if and only if BA+ λI is invertible.

This is called the “Push-Through” identity because in Eq. (13), matrix A is pushed from the left
side of (BA+ λIn)

−1 to the other. Notice in Equation 16, the left hand side requires the inverse of
an m ×m matrix while the right hand side requires an inverse of an n × n matrix. When m ≫ n
(m much larger than n), this property becomes computationally helpful as we need only compute
the inverse of the smaller matrix.
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Figure 3: Depiction of mass transfer

5 Revisiting the Mass Transfer Example

We want to move a mass (initially at rest) a distance close to 1 unit in 10 seconds by applying a
force every second (time is discretized into 1 second units). First, we start by defining the following
variables:

• xt = position at time t

• vt = velocity at time t

• ft = force applied at time t

We will assume that initial conditions are x0 = 0 and v0 = 0 and the dynamics of the system can
described by the following equations

1. vt+1 = vt + ft

2. xt+1 = xt + vt

Goals

1. Make (x10 − 1)2 small (get as close to final position as we can)

2. Make f2
0 + f2

1 + ...+ f2
9 small (use as little fuel as possible)

Solution Process .
First, write all goals in terms of f

x10 = v0 + v1 + ...+ v9 + x0

v1 = v0 + f0

v2 = v0 + f0 + f1

v3 = v0 + f0 + f1 + f2

...

v10 = f0 + f1 + f2 + · · ·+ f9

(17)
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Substitute the value for velocity (v10) into the expression for position(x10) to yield

x10 = 9f0 + 8f1 + 7f2 + · · ·+ f8

=
[
9 8 7 · · · 2 1

]

f0
f1
...
f8


= aTf

(18)

Then write the costs in optimization notation

Goal 1: J1(f) = ∥aTf − 1∥2

Goal 2: J2(f) = ∥f∥2
(19)

and then combine them to form a single cost function of the form

min
f

∥aTf − 1∥2 + ∥f∥2 (20)

and then we solve for f̂ using the push through identity

f̂ = (aaT + λI)−1a

= a(aTa+ λI)−1

=
1

∥a∥2 + λ
· a

(21)

As λ increases (heavily weighting J2 i.e the cost of fuel) the model would decide not to move and
pay the price for not reaching the destination. Conversely, as λ decreases (heavily weighting J1 i.e
distance) the model doesn’t care how much fuel is used as long as it ends up in the right place.
Fig. 4 below depicts a 2D plot of the trade-off curve (Pareto-optimal front).
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Figure 4: Trade-off curve between the squared position error and the squared norm of
the force applied.
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