### ME 7247: Advanced Control Systems

Fall 2022-23

Lecture 04: Multi-objective optimization

Tuesday, September 20, 2022

Lecturer: Laurent Lessard Scribe: Paola Kefallinos

Often a problem asks us to optimize more than one characteristic of a system. However there are usually trade-offs in doing so; that is, one can optimize a certain trait at the expense of another. For these kinds of problems, there isn't a solution: it's a matter of choice. Today we investigate how to optimize a problem with multiple objectives.

### 1 Review

Let's review what we've covered in the last couple of lectures considering the equation Ax = b with  $A \in \mathbb{R}^{m \times n}$ .

### Least Squares

- Typically, A is a tall matrix (more equations than variables)
- We would like to find an approximate solution  $A\hat{x} \approx b$  as there is typically no x satisfying Ax = b (called the *estimation* setup)
- In optimization notation, the least-squares (LS) problem is written as

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad ||Ax - b||^2 \tag{1}$$

• The set of solutions of Eq. (1) is precisely the same as the set of solutions to the *normal* equations (2) below.

$$A^{\mathsf{T}} A \hat{x} = A^{\mathsf{T}} b \tag{2}$$

• A solution to the normal equations always exists. That solution is unique if and only if  $null(A) = \{0\}$ , i.e. if the columns of A are linearly independent.

### Least Norm

- Typically, A is a wide matrix (more variables than equations)
- There are typically infinitely many x satisfying Ax = b, so we want to find the "best" x among all solutions (called the *control* setup)
- In optimization notation, the least-norm (LN) problem is written as

$$\begin{array}{ll}
\text{minimize} & \|x\|^2 \\
x \in \mathbb{R}^n & \text{such that} & Ax = b
\end{array} \tag{3}$$

• The set of solutions of (3) is precisely the same as the set of solutions  $\hat{x}$  to the system of equations

$$AA^{\mathsf{T}}w = b \quad \text{and} \quad \hat{x} = A^{\mathsf{T}}w$$
 (4)

• A solution to Eq. (4) exists if and only if  $b \in \text{range}(A)$ , i.e. if Ax = b has at least one solution. If a solution exists, it is always unique. Note: there may be many w that solve (4), but they all lead to the same  $\hat{x}$ .

# 2 Defining the Multi-Objective Optimization Problem

Introduction to the cost notation Consider a hybrid version of LS and LN, where we are trying to make both  $||Ax - b||^2$  and  $||x||^2$  small at the same time. First, we write these as two separate costs  $(J_1 : \mathbb{R}^n \to \mathbb{R})$  and  $J_2 : \mathbb{R}^n \to \mathbb{R}$ . In this case, we have

$$J_1(x) = ||Ax - b||^2 (5a)$$

$$J_2(x) = ||x||^2 \tag{5b}$$

Where Equation (5a) above represents the Least Squares problem and Equation (5b) represents the Least norm problem. One can see that a value of x that minimizes one function does not minimize the other. Figure 1 below depicts a 2D plot of  $J_1(x)$  and  $J_2(x)$  for all the possible x given that A and b are fixed.



Figure 1: Pareto-optimal front

The green line is the optimal solution, and is called the "Pareto-optimal front". The areas to the right and left of the line are "feasible" and "infeasible", respectively. A natural question may arise from this plot: which point on the line is the best? This question has no answer! Any design on this curve is an optimal solution to the multi-objective problem, and points on the Pareto-optimal front are not comparable unless we assign weights on the objective functions to prioritize them.

A single cost function We can write a single expression that combines these with the help of a weighting parameter  $\lambda > 0$  that weights the costs of each accordingly. Eq. (6) below shows that increasing the value of the weight parameter makes the cost function more sensitive to  $J_2(x)$ , and naturally the converse is true.

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad J_1(x) + \lambda J_2(x) \tag{6}$$

This is actually a least squares problem! Let's do some manipulation to prove it.

### Rearrange into Least Squares problem

1. Substitute Eqs. (5a) and (5b) into Eq. (6).

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad ||Ax - b||^2 + ||x||^2 \tag{7}$$

2. Recall block matrix with norm relationship

$$||x_1||^2 + ||x_2||^2 = \left\| \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|^2 \tag{8}$$

3. Rewrite (7) using (8)

$$||Ax - b||^2 + ||x||^2 = \min_{x} \left\| \begin{bmatrix} Ax - b \\ \sqrt{\lambda}x \end{bmatrix} \right\|^2$$
 (9a)

$$= \min_{x} \left\| \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|^{2} \tag{9b}$$

4. This is a LS problem, so its solution set is the same as that of the normal equations

$$\begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix} x = \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b \\ 0 \end{bmatrix}$$
 (10a)

$$\begin{bmatrix} A^{\mathsf{T}} & \sqrt{\lambda}I \end{bmatrix} \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix} = \begin{bmatrix} A^{\mathsf{T}} & \sqrt{\lambda}I \end{bmatrix} \begin{bmatrix} b \\ 0 \end{bmatrix}$$
 (10b)

$$A^{\mathsf{T}}A + \sqrt{\lambda}I(\sqrt{\lambda}I) = A^{\mathsf{T}}b + \sqrt{\lambda}I(0)$$
(10c)

$$(A^{\mathsf{T}}A + \lambda I)x = A^{\mathsf{T}}b \tag{10d}$$

5. The matrix  $A^{\mathsf{T}}A + \lambda I$  is invertible for any  $\lambda > 0$  and any A.



Figure 2: Slope of Pareto-optimal Curve

**Geometric interpretation:** The trade-off parameter  $\lambda$  is the negative slope of the Pareto-optimal curve. So as we vary  $\lambda = 0 \to \infty$ , we start on the bottom-right with a slope of 0 and end on the top-left with a slope of  $-\infty$ .

# 3 Special Cases

When  $\lambda \to 0$  in the multi-objective optimization problem, we can recover either the LS or the LN norm solution, depending on the assumptions we make.

**LS problem** In the LS setting, when  $\lambda \to 0$  and A has full column rank, then  $A^{\mathsf{T}}A$  is invertible. Thus, we can take the limit by just setting  $\lambda = 0$  and solving (10d).

$$\hat{x} = \lim_{\lambda \to 0} (A^{\mathsf{T}} A + \lambda I)^{-1} A^{\mathsf{T}} b$$

$$= (A^{\mathsf{T}} A)^{-1} A^{\mathsf{T}} b$$
(11)

This is the same solution we found when solving the LS problem in Lecture 2.

**LN problem** In the LN setting, when  $\lambda \to 0$  and A has full row rank,  $AA^{\mathsf{T}}$  is invertible. However, we can't simply set  $\lambda = 0$  as we did for LS because  $A^{\mathsf{T}}A$  is not invertible. We can nevertheless

evaluate the limit using the push-through identity (presented in the next section).

$$\hat{x} = \lim_{\lambda \to 0} (A^{\mathsf{T}} A + \lambda I)^{-1} A^{\mathsf{T}} b$$

$$= \lim_{\lambda \to 0} A^{\mathsf{T}} (A A^{\mathsf{T}} + \lambda I)^{-1} b$$

$$= A^{\mathsf{T}} (A A^{\mathsf{T}})^{-1} b$$
(12)

This is the same solution we found when solving the LN problem in Lecture 3.

## 4 The Push-Through Identity

**Push-Through Identity:** If  $A \in \mathbb{R}^{m \times n}$  and  $B \in \mathbb{R}^{n \times m}$ , then

$$A(BA + \lambda I)^{-1} = (AB + \lambda I)^{-1}A \tag{13}$$

Moreover,  $AB + \lambda I$  is invertible if and only if  $BA + \lambda I$  is invertible.

#### **Proof:**

1. Factor out A from the right and left of  $ABA + \lambda A$ .

$$A(BA + \lambda I_n) = ABA + \lambda A$$
  
=  $(AB + \lambda I_m)A$  (14)

2. Multiply both sides by  $(BA + \lambda I_n)^{-1}$  on the right to isolate A.

$$A = (AB + \lambda I_m)A(BA + \lambda I_n)^{-1} \tag{15}$$

3. Finally, multiply both sides by  $(AB + \lambda I_m)^{-1}$  on the left.

$$(AB + \lambda I_m)^{-1}A = A(BA + \lambda I_n)^{-1}$$
(16)

Regarding invertibility, suppose  $AB + \lambda I$  is not invertible. Then there must exist a nonzero element in the nullspace. So there is some  $v \neq 0$  such that  $ABv + \lambda v = 0$ . Multiply both sides by B on the left and obtain  $0 = BABv + \lambda Bv = (BA + \lambda I)Bv$ . Therefore  $Bv \in \text{null}(BA + \lambda I)$ . We can't have Bv = 0, because then  $ABv + \lambda v = \lambda v = 0$ , which contradicts the fact that  $\lambda > 0$  and  $v \neq 0$ . Therefore, we have identified a nonzero element of the nullspace of  $BA + \lambda I$ , which means that  $BA + \lambda I$  is not invertible. Applying the same argument starting with  $BA + \lambda I$ , we conclude that  $AB + \lambda I$  is invertible if and only if  $BA + \lambda I$  is invertible.

This is called the "Push-Through" identity because in Eq. (13), matrix A is pushed from the left side of  $(BA + \lambda I_n)^{-1}$  to the other. Notice in Equation 16, the left hand side requires the inverse of an  $m \times m$  matrix while the right hand side requires an inverse of an  $n \times n$  matrix. When  $m \gg n$  (m much larger than n), this property becomes computationally helpful as we need only compute the inverse of the smaller matrix.



Figure 3: Depiction of mass transfer

# 5 Revisiting the Mass Transfer Example

We want to move a mass (initially at rest) a distance close to 1 unit in 10 seconds by applying a force every second (time is discretized into 1 second units). First, we start by defining the following variables:

- $x_t = position at time t$
- $v_t$  = velocity at time t
- $f_t$  = force applied at time t

We will assume that initial conditions are  $x_0 = 0$  and  $v_0 = 0$  and the dynamics of the system can described by the following equations

- 1.  $v_{t+1} = v_t + f_t$
- 2.  $x_{t+1} = x_t + v_t$

### Goals

- 1. Make  $(x_{10}-1)^2$  small (get as close to final position as we can)
- 2. Make  $f_0^2 + f_1^2 + ... + f_9^2$  small (use as little fuel as possible)

### Solution Process

First, write all goals in terms of f

$$x_{10} = v_0 + v_1 + \dots + v_9 + x_0$$

$$v_1 = v_0 + f_0$$

$$v_2 = v_0 + f_0 + f_1$$

$$v_3 = v_0 + f_0 + f_1 + f_2$$

$$\vdots$$

$$v_{10} = f_0 + f_1 + f_2 + \dots + f_9$$
(17)

Substitute the value for velocity  $(v_10)$  into the expression for position  $(x_10)$  to yield

$$x_{10} = 9f_0 + 8f_1 + 7f_2 + \dots + f_8$$

$$= \begin{bmatrix} 9 & 8 & 7 & \dots & 2 & 1 \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_8 \end{bmatrix}$$

$$= a^{\mathsf{T}} f$$
(18)

Then write the costs in optimization notation

Goal 1: 
$$J_1(f) = ||a^{\mathsf{T}}f - 1||^2$$
  
Goal 2:  $J_2(f) = ||f||^2$  (19)

and then combine them to form a single cost function of the form

$$\min_{f} \|a^{\mathsf{T}} f - 1\|^2 + \|f\|^2 \tag{20}$$

and then we solve for  $\hat{f}$  using the push through identity

$$\hat{f} = (aa^{\mathsf{T}} + \lambda I)^{-1}a$$

$$= a(a^{\mathsf{T}}a + \lambda I)^{-1}$$

$$= \frac{1}{\|a\|^2 + \lambda} \cdot a$$
(21)

As  $\lambda$  increases (heavily weighting  $J_2$  i.e the cost of fuel) the model would decide not to move and pay the price for not reaching the destination. Conversely, as  $\lambda$  decreases (heavily weighting  $J_1$  i.e distance) the model doesn't care how much fuel is used as long as it ends up in the right place. Fig. 4 below depicts a 2D plot of the trade-off curve (Pareto-optimal front).



Figure 4: Trade-off curve between the squared position error and the squared norm of the force applied.